Laser Safety and the National Ignition Facility

10th Annual Department of Energy LSO Workshop August 20, 2014

Jamie J. King, LLNL/NIF&PS Laser Safety Officer

LLNL-PRES-658899

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

NIF&PS Missions

Ensuring Global Stability & Global Security

Advancing Frontier Science

The mission of NIF&PS is to maintain U.S. leadership, enhance national security, and prevent technological surprise through its development and application of photonics.

Enabling Clean Energy

What constitutes NIF&PS?

Major Facilities

NIF

Target Fab

OPF

Grating Fab

Fiber Tower

Programs

ICF

E-23

DPAL

Fibers

Developing Technologies for Future Programs

IFE

Compton Gamma Sources

Compelling scientific questions that are being addressed at the NIF

The NIF laser is the culmination of a long line of LLNL systems

Janus, 1973 Argus, 1976 Shiva, 1977 Nova, 1984 100 J IR NIF, 2009 1 kJ IR 10 kJ IR 30 kJ UV 1.8 MJ UV

Master Oscillator Room (MOR)

Preamplifier Modules (PAMs)

PAM Laser Safety

Amplifiers and Flashlamps

Deformable Mirror

Plasma Electrode Pockels Cell (PEPC)

Beam Transport

Target Chamber Bay

Diagnostic Lasers

- Diagnostic Lasers require additional controls because:
 - Generally High Powered (Class 3B and Class 4)
 - Can be operated independent of the NIF
 - Some present beam hazards far from source
- Velocity Interferometry for any Reflector (VISAR)
- Full Aperture Backscatter (FABS)
- Calibration Laser (LCAL)
- Advanced Radiographic Capabilities (ARC)
- Edge

Diagnostic Lasers (cont')

- Laser Safety
 - Laser Safety Gram
 - Each diagnostic may have unique controls
 - Generally typical laser safety protocols in effect

Some require custom controls

LOTO and Key Tree

NIF is having significant impact on broader national security questions

Continued LLNL leadership in high peak power, high average power, and high energy lasers

NIF&PS should continue to lead in photonics technology

Sources

Optics Innovation

National Security Applications

